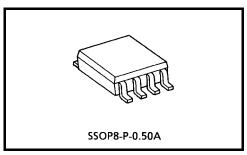
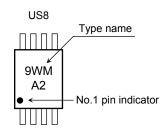
TOSHIBA CMOS Digital Integrated Circuits Silicon Monolithic

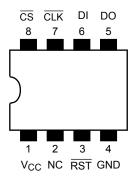

TC9WMA2FK

2,048-Bit (256 × 8 Bit) Serial E^2 PROM

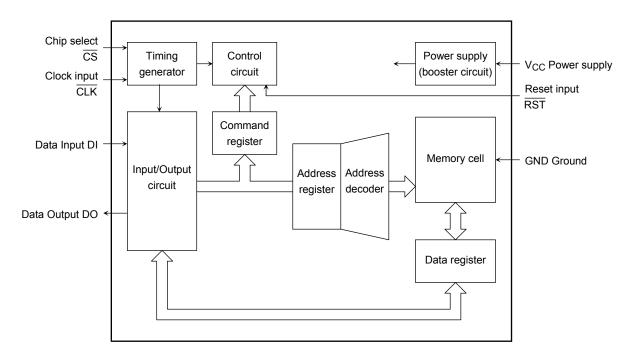
The TC9WMA2FK is electrically erasable/programmable nonvolatile memory (E^2 PROM).


Features

- Serial data input/output
- Programmable in units of one word and collectively erasable in one operation
- Automatically set programming time (built-in timer)
- Programming time: 10 ms (max) (V_{CC} = 3.0 to 5.5 V)
 12 ms (max) (V_{CC} = 2.3 to 2.7 V)
- Overwrite enabled or disabled by software
- Single power supply and low power consumption
- Operating voltage range for reading: $V_{CC} = 1.8$ to 5.5 V
- Operating voltage range for writing: $V_{CC} = 2.3$ to 5.5 V
- Wide operating temperature range (-40 to 85°C)



Weight: 0.01 g (typ.)


Product Marking

Pin Assignment (top view)

Block Diagram

Pin Function

Pin Name	Input/Output	Function
cs	Input	Chip select A low on CS selects the chip. Always return CS high temporarily before executing instructions.
CLK	Input	Clock input The data on DI is latched by a rising edge of CLK. Data is output to DO by a falling edge of CLK. CLK is effective when CS is low.
DI	Input	Serial data input This pin is used to enter addresses, commands, and data into the chip.
DO	Output	Serial data output This pin outputs data from the chip.
RST	Input	Reset input A low on this input resets the chip.
NC	_	No connection (not connected internally)
V _{CC}	Power supply	1.8 V~5.5 V (for reading) 2.3~5.5 V (for writing)
GND		0 V (GND)

Functional Description

1. Types of Instructions

Outside	Address	Command							Dete	
Operation	Address	C0	C1	C2	C3					Data
Read	A0~A7	1	0	0	0	0	0	0	0	
Program	A0~A7	0	1	1	0	0	0	0	0	D0~D7
All erase	******	0	0	1	1	0	0	0	0	
Busy monitor	******	1	0	1	1	0	0	0	0	
Overwrite enable	******	1	0	0	1	0	0	0	0	
Overwrite disable	******	1	1	0	1	0	0	0	0	
Read Auto-incremented	A0~A7	1	0	0	0	1	0	0	0	

^{*:} Don't care

2. Operation Method

Be sure to drive \overline{CS} and \overline{CLK} high temporarily before entering an instruction. After \overline{CS} is asserted low, \overline{CLK} becomes effective, acting as a serial transfer synchronizing signal. The data on DI is latched on a rising edge of \overline{CLK} , while data is output to DO on a falling edge of \overline{CLK} .

Instructions can only be executed when the chip is not being programmed or collectively erased (i.e., when the ready/busy status signal is high). However, the Monitor Busy instruction can be entered at any time

Only the commands listed in the above table can be used. Do not use any other command.

• Read

Entering the Read instruction causes memory data at the specified address to be read out and serially output from the DO pin.

• Program

Entering the Program instruction causes overwrite operation to automatically start within the chip, overwriting memory data at the specified address with the input data.

After the instruction is entered, \overline{CS} can be driven high even while overwrite operation is still in progress internally.

• All Erase

Entering the Erase All instruction causes erase operation to automatically start within the chip, erasing memory data at all addresses.

After the instruction is entered, CS can be driven high even while erase operation is still in progress internally.

This command clears the memory data to 0.

• Busy Monitor

Entering the Monitor Busy instruction causes a ready/busy status signal to be output from the DO pin. This output signal is low while the chip is being programmed or collectively erased, and is high after programming or collective erase operation is completed.

The ready/busy status signal is output continuously until $\overline{\text{CS}}$ is driven high.

• Overwrite Enable/Disable

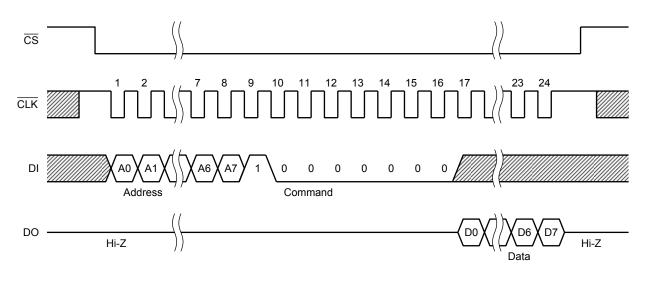
Entering the Enable Overwrite instruction places the chip in overwrite enabled mode, where the Program and Erase All instructions can be entered.

Entering the Disable Overwrite instruction places the chip in overwrite disabled mode, where the Program and Erase All instructions cannot be entered.

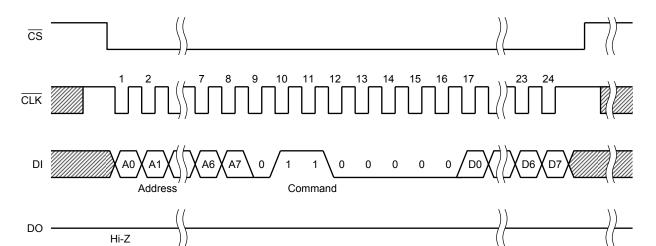
Once the chip is placed in overwrite disabled mode, it remains disabled against overwriting until the Enable Overwrite instruction is entered.

• Read Auto-incremented

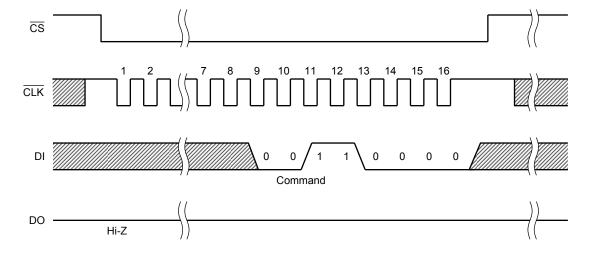
After the data at the specified address is output, the subsequent $\overline{\text{CLK}}$ pulse causes the address to be incremented so that the data at the next address is output automatically. After the data at the last address is output, that at the first address will be read and output.

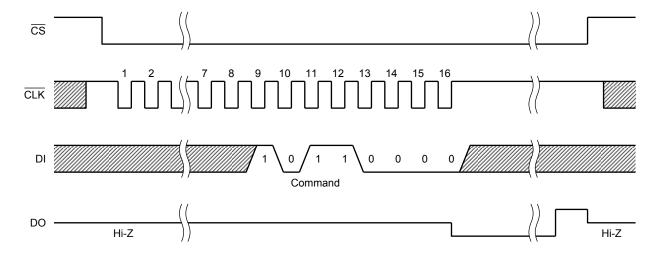

3

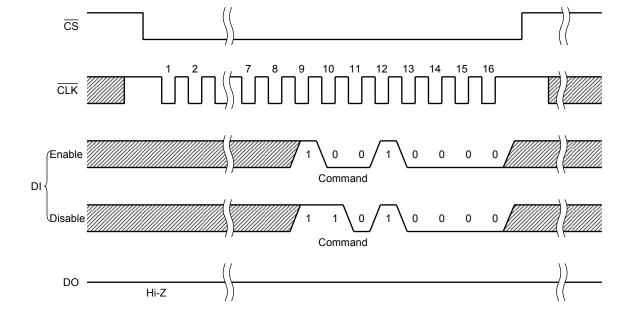
3. Precautions on Powering Up or Down the Chip

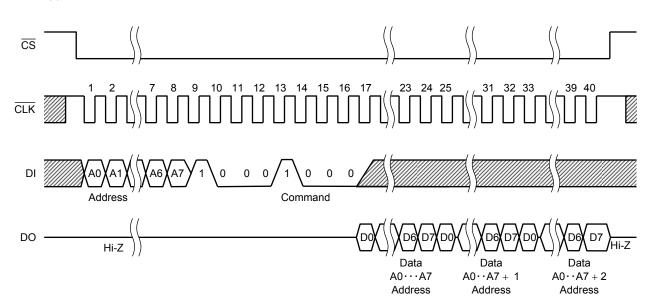

- (1) A wait time of 1 ms is required before the chip can start operation after it is powered up.
- (2) Ensure that \overline{RST} is low when powering up or down the chip.
- (3) Resetting the chip places it in overwrite disabled mode.

4. Timing Chart


(1) Read


(2) Program


(3) All Erase


(4) Busy Monitor

(5) Overwrite Enable/Disable

(6) Read Auto-incremented

Absolute Maximum Ratings (Note) (GND = 0 V)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.3~7.0	V
Input voltage	V _{IN}	-0.3~V _{CC} + 0.3	V
Output voltage	V _{OUT}	-0.3~V _{CC} + 0.3	V
Power dissipation	PD	200 (25°C)	mW
Soldering temperature (in time)	T _{sld}	260 (10 s)	°C
Storage temperature	T _{stg}	-55~125	°C
Operating temperature	T _{opr}	-40~85	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (Note 1) (GND = 0 V, Topr = -40 to 85°C)

Characteristics	Symbol	Test Condition	Min	Max	Unit
Supply voltage (for reading)	V _{CC}		1.8	5.5	V
Supply voltage (for writing)	V _{CC}		2.3	5.5	V

Operating Ranges (Note 1) ($V_{CC} = 1.8 \text{ to } 2.7 \text{ V}$, GND = 0 V, $T_{opr} = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	1.8 V ≦ V ₀	_{CC} < 2.3 V	2.3 V ≦ V ₀	Unit		
Characteristics	Symbol	Min	Max	Min	Max	Offic	
Low level input voltage	V_{IL}	0	$0.15 \times V_{CC}$	0	0.35	V	
I Bala I and Carrott and Carro	V _{IH1} (Note 1)	0.7 × V _{CC}	V _{CC}	1.6	V _{CC}	V	
High level input voltage	V _{IH2} (Note 2)	0.8 × V _{CC}	V _{CC}	1.8	V _{CC}	V	
Operating frequency	fCLK	0	0.25	0	0.5	MHz	

Operating Ranges (Note 1) ($V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_{opr} = -40$ to 85°C)

Characteristics	Symbol	2.7 V ≦ V _C	CC ≦ 3.6 V	4.5 V ≦ V ₀	Unit		
Characteristics	Symbol	Min	Max	Min	Max	Offic	
Low level input voltage	V_{IL}	0	0.45	0	0.7	V	
I Bak Jawa Kanada a Mana	V _{IH1} (Note 2)	1.6	V _{CC}	2.0	V _{CC}	V	
High level input voltage	V _{IH2} (Note 3)	2.2	V _{CC}	3.0	Max 0.7	V	
Operating frequency	fCLK	0	1	0	1	MHz	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

7

Note 2: \overline{CS} , DI, \overline{RST}

Note 3: CLK

Electrical Characteristics

D.C. Characteristics ($V_{CC} = 1.8 \text{ to } 2.7 \text{ V}$, GND = 0 V, $T_{opr} = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition	1.8 V ≦ V ₀	_{CC} < 2.3 V	2.3 V ≦ V ₀	_{CC} < 2.7 V	Unit	
Characteristics	Symbol	rest Condition	Min	Max	Min	Max	Offic	
Input current	ILI		_	±1	_	±1	μА	
Output leakage current	I _{LO}		_	±1	_	±1	μА	
High level output voltage		I _{OH} = -1 mA	_		_			
	Voн	I _{OH} = -500 μA	_		V _{CC} – 0.4		V	
		I _{OH} = -100 μA	V _{CC} - 0.2		_			
	ILI	I _{OL} = 2 mA	_		_			
Low level output voltage		$I_{OL} = 500 \mu A$	_		0.4		V	
		$I_{OL} = 100 \mu A$	0.2		_			
Quiescent supply current			_	5		5	μΑ	
Supply current during read			_	0.5	_	1.0	mA	
Supply current during all erase/program			_	_	_	1.0	mA	

D.C. Characteristics ($V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$, GND = 0 V, $T_{opr} = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition -	2.7 V ≦ V ₀	_{CC} < 3.6 V	4.5 V ≦ V _C	_{CC} ≦ 5.5 V	Unit	
Characteristics	Symbol	rest Condition	Min	Max	Min	Max	Offic	
Input current	ILI		_	±1	_	±1	μΑ	
Output leakage current	I _{LO}		_	±1	_	±1	μΑ	
High level output voltage		I _{OH} = -1 mA	V _{CC} – 0.4	_	V _{CC} – 0.4	_		
		I _{OH} = -500 μA	_	_	_	_	V	
		I _{OH} = -100 μA	_	_	_	_		
	V _{OL}	I _{OL} = 2 mA	0.4	_	0.4	_		
Low level output voltage		$I_{OL} = 500 \ \mu A$	_	_	_	_	V	
		$I_{OL} = 100 \ \mu A$	_	_	Min Ma ± ± V _{CC} - 0.4	_		
Quiescent supply current	I _{CC1} (Note 1)		_	5	_	5	μΑ	
Supply current during read	I _{CC2} (Note 2)		_	1.5	_	2.5	mA	
Supply current during all erase/program	I _{CC3} (Note 3)		_	1.0	_	2.0	mA	

Note 1: $\overline{CS} = 1$ (except when busy, however)

Note 2: Current that flows for a period between a fall of the 14th $\overline{\text{CLK}}$ pulse and a rise of the 16th $\overline{\text{CLK}}$ pulse when executing the Read instruction.

8

Note 3: Current that flows while executing the Erase All or Program instruction.

A.C. Characteristics (V_{CC} = 1.8 to 2.7 V, GND = 0 V, T_{opr} = -40 to 85°C)

Characteristics	Symbol	Test Condition	1.8 V ≦ V ₀	_{CC} < 2.3 V	2.3 V ≦ V ₀	_{CC} < 2.7 V	Unit
Characteristics	Symbol	rest Condition	Min	Max	Min	Max	Offic
Maximum clock frequency	f _{MAX}		0	0.25	0	0.5	MHz
Minimum clock pulse width	twCLK (L)		1.0		1.0		μS
Williman clock pulse width	twCLK (H)		1.0	_	1.0		μδ
Minimum reset pulse width	twrst		1	_	1	_	μS
Minimum chip select pulse width	twcs		1	_	1	_	μS
Reset setup time	t _{RSS}	RST setup time when CS is switched over	1	_	1	_	μS
Clock setup time	t _{CKS}	CLK setup time when CS is switched over	500	_	500	_	ns
CS setup time	tcss	CLK is switched over	500	_	500	_	ns
Propagation delay time	t _{pLH} t _{pHL} t _{pZH} t _{pZL}	Time from CLK switchover until valid data is output	_	2.0	_	1.0	μS
(Note)	t _{pLZ} t _{pHZ}	Time from CS switchover until output data goes Hi-Z	_	2.0	_	1.0	
Input data setup time	t _s	Input data setup time when CLK is switched over	500	_	500	_	ns
Input data hold time	t _h	Input d <u>ata h</u> old time when CLK is switched over	500	_	500	_	ns

Note: $C_L = 100 \text{ pF}, R_L = 1 \text{ k}\Omega$

9 2007-10-19

A.C. Characteristics (V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_{opr} = -40 to 85°C)

Characteristics	Symbol	Test Condition	2.7 V ≦ V ₀	_{CC} ≦ 3.6 V	4.5 V ≦ V ₀	_{CC} ≦ 5.5 V	Unit
Characteristics	Symbol	rest Condition	Min	Max	Min	Max	Offic
Maximum clock frequency	f _{MAX}		0	1	0	1	MHz
Minimum clock pulse width	twCLK (L)		0.4		0.4		6
Williman clock pulse width	twCLK (H)		0.4		0.4		μS
Minimum reset pulse width	twrst		1		1		μS
Minimum chip select pulse width	twcs		1		1		μS
Reset setup time	t _{RSS}	RST setup time when CS is switched over	1	_	1	_	μS
Clock setup time	tcks	CLK setup time when CS is switched over	250	_	250	_	ns
CS setup time	tcss	CLK is switched over	250	_	250	_	ns
Propagation delay time	t _{pLH} t _{pHL} t _{pZH} t _{pZL}	Time from CLK switchover until valid data is output		0.25		0.25	μs
(Note)	t _{pLZ} t _{pHZ}	Time from CS switchover until output data goes Hi-Z	_	0.5	_	0.25	
Input data setup time	t _s	Input d <u>ata s</u> etup time when CLK is switched over	250	_	250	_	ns
Input data hold time	t _h	Input d <u>ata h</u> old time when CLK is switched over	250		250		ns

Note: $C_L = 100 \text{ pF}, R_L = 1 \text{ k}\Omega$

10 2007-10-19

$\label{eq:promcharacteristics} \text{E}^2 \text{PROM Characteristics (GND} = 0 \text{ V, 2.3 V} \leqq \text{V}_{\text{CC}} \leqq \text{2.7 V, T}_{opr} = -40 \text{ to } 85^{\circ}\text{C})$

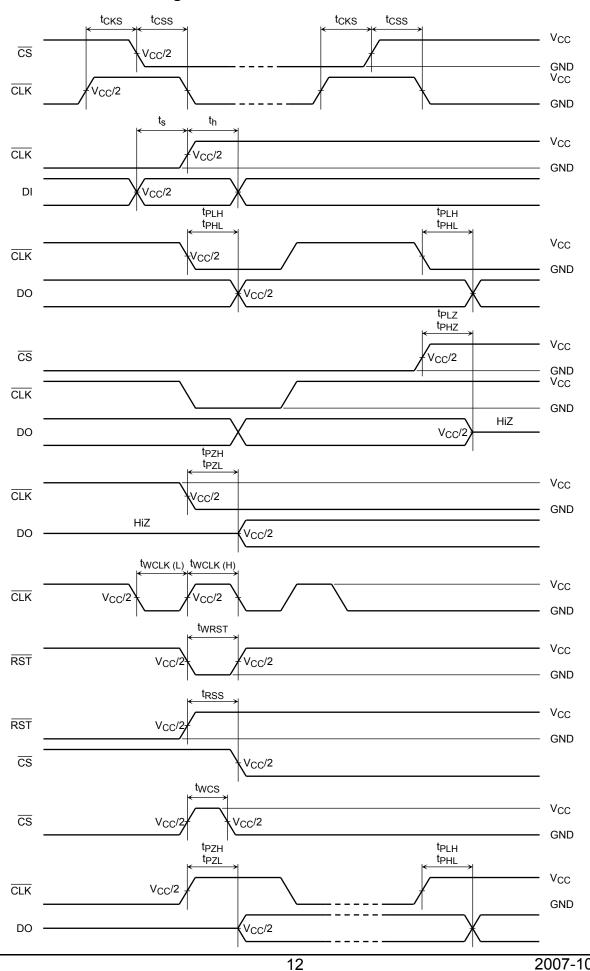
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
All erase time	tE		_		12	ms
Program time	t₽		_		12	ms
Endurance	N _{EW}		1 × 10 ⁵	_	_	Times
Data retention time	t _{RET}		10	_	_	Year

E²PROM Characteristics (GND = 0 V, 3.0 V \leq V_{CC} \leq 5.5 V, T_{opr} = -40 to 85°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
All erase time	tE		_		10	ms
Program time	t _P		_		10	ms
Endurance	N _{EW}		1 × 10 ⁵	_	_	Times
Data retention time	t _{RET}		10	_	_	Year

Capacitance Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V	Тур.	Unit
Input capacitance	C _{IN}		3.3	4	pF
Output capacitance	CO		3.3	3	pF
Equivalent Internal capacitance	C _{PD}	$f_{IN} = 1 \text{ MHz}$ (N	ote) 3.3	8.5	pF


Note: C_{PD} denotes the IC's internal equivalent capacitance calculated from the amount of current it consumes while operating.

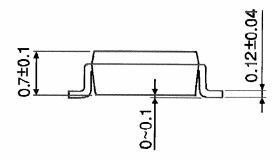
The average current consumption during non-loaded operation is obtained from the equations below.

 $I_{CC (Read)} = f_{CLK} \cdot C_{PD} \cdot V_{CC} + I_{CC1} + I_{CC2} \cdot 3/24$

ICC (Prog) = fCLK · CPD · VCC + ICC1 + ICC3

A.C. Characteristics Timing Chart

Input/Output Circuits of Pins


Pin Name	Туре	Input/Output Circuit	Remarks	
CS DI RST	Input			
CLK	Input		Hysteresis input	
DO	Output	Output control signal Vcc	Initial "HiZ"	

13 2007-10-19

Package Dimensions

SSOP8-P-0.50A Unit: mm

14

Weight: 0.01 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.